
TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN - CORRECTION

1

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN - CORRECTION

Les catégories et les symboles sont définis dans le fichier python de cette manière :

Listes de symboles
categories = ["majuscules", "minuscules", "chiffres", "special"]
symboles = [
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
 "abcdefghijklmnopqrstuvwxyz",
 "0123456789",
 ".:,;'(!?)éèàçùêûâ",
]

On introduit la fonction suivante :

def lire_symbole_fichier(nomFichier: str) -> str:
 car = nomFichier.split('_')
 num = car[2].split('.')[0]
 var = car[1][:len(car[1])-2]
 ind = categories.index(var)
 return symboles[ind][int(num)]

1. Indiquer ce que valent les variables car, num, var, ind et ce qui est renvoyé par la

fonction si nomFichier="Zurich Light BT_majuscules18_10.png".
On obtient :

- car = ["Zurich Light BT", "majuscules18", "10.png"] ;
- num = "10" (on prend "10.png", puis on coupe au point) ;
- var = "majuscules" (on retire les 2 derniers caractères de "majuscules18", donc

on enlève "18") ;
- ind = categories.index("majuscules")donc ind = 0 si categories =

["majuscules", "minuscules", "chiffres", "special"] ;
- symboles[ind][int(num)] = symboles[0][10] ;

Si symboles[0] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ", alors l’indice 10 (indexation à
partir de 0) correspond à la lettre "K". Donc la fonction renvoie "K".

2. Écrire la fonction lire_donnees_ref(dossier:str,fichiers_car_ref:list)->dict

qui prend en argument le dossier et une liste des noms de fichiers images contenus dans
ce dossier fichiers_car_ref et qui renvoie le dictionnaire contenant tous les tableaux
catégorisés.

Voir fichier « TD1_Correction.py » : Question 2

3. Écrire une fonction distance(im1:array, im2:array)->float qui calcule la distance

entre les deux images im1 et im2 supposées de même dimension.
Voir fichier « TD1_Correction.py » : Question 3

4. Écrire la même fonction distance_np(im1:array, im2:array)->float mais en

utilisant la fonction np.linalg.norm() de la librairie numpy.
Voir fichier « TD1_Correction.py » : Question 4

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN - CORRECTION

2

5. Écrire la fonction calcul_distances(carac_ref:dict, carac_test:array)->dict
qui prend en argument le dictionnaire des tableaux catégorisés et un tableau associé au
caractère à tester et qui renvoie le dictionnaire des distances.

Voir fichier « TD1_Correction.py » : Question 5

6. En se plaçant dans le pire des cas, indiquer le nom d’une méthode de tri performante

envisageable, en précisant sa complexité temporelle en fonction de n.
Dans le pire des cas la méthode de tri fusion est performante et a une complexité en
O(n ln(n)).

7. Compléter les 3 zones manquantes dans cet algorithme.

def Kvoisins(distances:dict, K:int) -> list :
 voisins = [(float("inf"),"") for k in range (K)]
 for lettre in distances:
 d = distances[lettre]
 for j in range (len(d)):
 if d[j] < voisins[-1][0]:
 k = len(voisins)-1
 while k > 0 and d[j] < voisins[k-1][0]:
 voisins[k] = voisins[k-1]
 k=k-1
 voisins[k] = [d[j], lettre]
 return voisins

8. Préciser la complexité temporelle asymptotique dans le pire des cas de cet algorithme en

fonction de n et de K. Comparer avec l’utilisation d’un tri classique sachant que n est
grand et K ne dépassera pas 5.

Les deux boucles lettre et j permettent de balayer les n éléments. Le pire des cas est
lorsque les distances sont par ordre décroissant « globalement » et pour chaque lettre.
Dans ce cas on sera en O(K∙n). Comme K est beaucoup plus petit que n, on a une
complexité linéaire en n, avec une petite constante. On en déduit que cet algorithme est
plus performant qu’un tri classique qui consisterait à trier toutes les distances en O(nlogn).

9. Écrire une fonction symbole_majoritaire(voisins:list)->str qui à partir de la liste

voisins renvoyée par la fonction Kvoisins renvoie le symbole majoritaire.
Voir fichier « TD1_Correction.py » : Question 9

10. Commenter les résultats obtenus.
On remarque que le nombre de voisins ne semble pas influencer la reconnaissance des
caractères. Par contre on constate que plus on utilise des images des caractères plus la
reconnaissance est correcte.

11. Compléter la fonction Lire_test_mot().
Voir fichier « TD1_Correction.py » : Question 11

TD : RECONNAISSANCE DE CARACTÈRES AVEC KNN - CORRECTION

3

12. Écrire la fonction KNN_test(symboles_numpy, k, base) qui retrouve le mot codé dans
le dictionnaire symboles_numpy

Voir fichier « TD1_Correction.py » : Question 12

13. Indiquer ce que voudrait dire M(1, 0) = 1.
Cela signifierait qu’un symbole A aurait été trouvé pour la recherche du symbole B.

14. Écrire la fonction Matrice_confusion(k,base) qui retourne la matrice de confusion sur

les symboles de la liste symboles_confusion pour un KNN avec les k plus proches
voisins et en utilisant la base base comme source d’apprentissage.

Voir fichier « TD1_Correction.py » : Question 14

15. Visuellement, que pouvez-vous conclure du KNN à partir de la matrice de confusion ?
La matrice n’est pas du tout diagonale pour la base de référence, le KNN est donc très
médiocre. Par contre elle est quasiment diagonale avec l’utilisation de la base 11x79.

16. Écrire la fonction Taux_de_reussite(matrice) qui calcule le taux de réussite.
Voir fichier « TD1_Correction.py » : Question 16

