TD : RECONNAISSANCE DE CARACTERES AVEC KNN - CORRECTION

TD : RECONNAISSANCE DE CARACTERES AVEC KNN - CORRECTION

Les catégories et les symboles sont définis dans le fichier python de cette maniére :

Listes de symboles
categories = ["majuscules", "minuscules", "chiffres", "special"l]
symboles = [

"ABCDEFGHIJKLMNOPQRSTUVWXYZ",

"abcdefghijklmnopqrstuvwxyz",

"0123456789",

"o, (1?)éeacuénat,

On introduit la fonction suivante :

def lire_symbole_fichier(nomFichier: str) -> str:
car = nomFichier.split('_")
num = car[2].split('.')[0]
var = car[1][:len(car[1])-2]
ind = categories.index(var)
return symboles[ind][int(num)]

1. Indiquer ce que valent les variables car, num, var, ind et ce qui est renvoyé par la
fonction si nomFichier="Zurich Light BT_majuscules18_10.png".
On obtient :
- car ["Zurich Light BT", "majuscules18", "10.png"];
- num = "10" (on prend "10.png", puis on coupe au point) ;
- var = "majuscules" (on retire les 2 derniers caractéres de "majuscules18", donc
on enléve "18") ;
- ind = categories.index("majuscules")doncind = 0 sicategories =
["majuscules", "minuscules", "chiffres", "special"];
- symboles[ind][int(num)] = symboles[0][10];
Si symboles[0] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ", alors I'indice 10 (indexation a
partir de 0) correspond a la lettre "K". Donc la fonction renvoie "K".

2. Ecrire la fonction lire_donnees_ref(dossier:str,fichiers_car_ref:list)->dict
qui prend en argument le dossier et une liste des noms de fichiers images contenus dans
ce dossier fichiers_car_ref et qui renvoie le dictionnaire contenant tous les tableaux
catégorisés.

Voir fichier « TD1_Correction.py » : Question 2

3. Ecrire une fonction distance(iml:array, im2:array)->float qui calcule la distance
entre les deux images iml et im2 supposées de méme dimension.
Voir fichier « TD1_Correction.py » : Question 3

4. Ecrire la méme fonction distance_np(iml:array, im2:array)->float maisen
utilisant la fonction np.linalg.norm() de la librairie numpy.
Voir fichier « TD1_Correction.py » : Question 4

TD : RECONNAISSANCE DE CARACTERES AVEC KNN - CORRECTION

5. Ecrire la fonction calcul_distances(carac_ref:dict, carac_test:array)->dict
qui prend en argument le dictionnaire des tableaux catégorisés et un tableau associé au
caractere a tester et qui renvoie le dictionnaire des distances.

Voir fichier « TD1_Correction.py » : Question 5

6. En se plagant dans le pire des cas, indiquer le nom d’une méthode de tri performante
envisageable, en précisant sa complexité temporelle en fonction de n.

Dans le pire des cas la méthode de tri fusion est performante et a une complexité en

O(n In(n)).

7. Compléter les 3 zones manquantes dans cet algorithme.

def Kvoisins(distances:dict, K:int) -> list :
voisins = [(float("inf"),"") for Kk in range (K)]
for lettre in distances:
d = distances[lettrel
for j in range (len(d)):
if d[j] < voisins[-1]1[0]:
k = len(voisins)-1
while k > 0 and d[j] < voisins[k-1][0]:
voisins[k] = voisins[k-1]
k=k-1
voisins[k] = [d[j], lettrel]
return voisins

8. Préciser la complexité temporelle asymptotique dans le pire des cas de cet algorithme en
fonction de n et de K. Comparer avec I'utilisation d’un tri classique sachant que n est
grand et K ne dépassera pas 5.

Les deux boucles lettre et j permettent de balayer les n éléments. Le pire des cas est
lorsque les distances sont par ordre décroissant « globalement » et pour chaque lettre.
Dans ce cas on sera en O(K-n). Comme K est beaucoup plus petit que n, on a une
complexité linéaire en n, avec une petite constante. On en déduit que cet algorithme est
plus performant qu’un tri classique qui consisterait a trier toutes les distances en O(nlogn).

9. Ecrire une fonction symbole_majoritaire(voisins:list)->str quia partir de la liste
voisins renvoyée par la fonction Kvoisins renvoie le symbole majoritaire.
Voir fichier « TD1_Correction.py » : Question 9

10. Commenter les résultats obtenus.

On remarque que le nombre de voisins ne semble pas influencer la reconnaissance des
caracteres. Par contre on constate que plus on utilise des images des caractéres plus la
reconnaissance est correcte.

11. Compléter la fonction Lire_test_mot().
Voir fichier « TD1_Correction.py » : Question 11

TD : RECONNAISSANCE DE CARACTERES AVEC KNN - CORRECTION

12. Ecrire la fonction KNN_test (symboles_numpy, k, base) quiretrouve le mot codé dans
le dictionnaire symboles_numpy
Voir fichier « TD1_Correction.py » : Question 12

13. Indiquer ce que voudrait dire M(1, 0) = 1.
Cela signifierait qu’un symbole A aurait été trouvé pour la recherche du symbole B.

14. Ecrire la fonction Matrice_confusion(k, base) qui retourne la matrice de confusion sur
les symboles de la liste symboles_confusion pour un KNN avec les k plus proches
voisins et en utilisant la base base comme source d’apprentissage.

Voir fichier « TD1_Correction.py » : Question 14

15. Visuellement, que pouvez-vous conclure du KNN a partir de la matrice de confusion ?
La matrice n’est pas du tout diagonale pour la base de référence, le KNN est donc tres
médiocre. Par contre elle est quasiment diagonale avec l'utilisation de la base 11x79.

16. Ecrire la fonction Taux_de_reussite(matrice) qui calcule le taux de réussite.
Voir fichier « TD1_Correction.py » : Question 16

